Position-aware Attention and Supervised Data Improve Slot Filling

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, Christopher D. Manning

> Stanford University September, 2017

Knowledge Base Population

Penner is survived by his brother, John, a copy editor at the Times, and his former wife, Times sportswriter Lisa Dillman.

Knowledge Base Population

Penner is survived by his brother, John, a copy editor at the Times, and his former wife, Times sportswriter Lisa Dillman.

▼				
Subject	Relation/Slot	Object		
Mike Penner	per:spouse	Lisa Dillman		
Lisa Dillman	per:title	Sportswriter		
Lisa Dillman	per:employee_of	Los Angeles Times		
•••	•••	•••		

Knowledge Base Population

Penner is survived by his brother, John, a copy editor at the Times, and his former wife, Times sportswriter Lisa Dillman.

Subject	Relation/Slot	Object
Mike Penner	per:spouse	?
Lisa Dillman	per:title	?
Lisa Dillman	per:employee_of	?
•••	•••	•••

Key Problems

 Stanford routinely found DL models ineffective at slot filling task.

Key Problems

- Stanford routinely found DL models ineffective at slot filling task.
 - I. Existing models insufficiently tailored to relation extraction
 - 2. Lack of a large-scale, fully supervised dataset for slot filling

Overview

Model: A new position-aware attention model

╉

Data: A new supervised dataset, TACRED

Result: Improved slot filling

Overview

Model: A new position-aware attention model

t

Data: A new supervised dataset, TACRED

Result: Improved slot filling

Relation Extraction

Penner is survived by <u>his brother</u>, John, a copy editor at the Times, and <u>his former wife</u>, Times sportswriter Lisa Dillman.

Relation Extraction

Penner is survived by <u>his brother</u>, John, a copy editor at the Times, and <u>his former wife</u>, Times sportswriter **Lisa Dillman**.

Key elements

- Context (relevant + irrelevant)
- Entities (types + positions)

Embedding LayersWord: $\mathbf{x} = [\mathbf{x}_1, ..., \mathbf{x}_n]$ Position: $\mathbf{p}^s = [\mathbf{p}_1^s, ..., \mathbf{p}_n^s]$ $\mathbf{p}^o = [\mathbf{p}_1^o, ..., \mathbf{p}_n^o]$

Embedding LayersWord: $\mathbf{x} = [\mathbf{x}_1, ..., \mathbf{x}_n]$ Position: $\mathbf{p}^s = [\mathbf{p}_1^s, ..., \mathbf{p}_n^s]$ $\mathbf{p}^o = [\mathbf{p}_1^o, ..., \mathbf{p}_n^o]$

LSTM Layers

$$\{\mathbf{h}_1, ..., \mathbf{h}_n\} = \mathrm{LSTM}(\{\mathbf{x}_1, ..., \mathbf{x}_n\})$$

Summary Vector

 $\mathbf{q} = \mathbf{h}_n$

Summary Vector

 $\mathbf{q} = \mathbf{h}_n$

Attention Layer

$$u_{i} = \mathbf{v}^{\top} \tanh(\mathbf{W}_{h}\mathbf{h}_{i} + \mathbf{W}_{q}\mathbf{q} + \mathbf{W}_{s}\mathbf{p}_{i}^{s} + \mathbf{W}_{o}\mathbf{p}_{i}^{o})$$
$$u_{i} = \frac{\exp(u_{i})}{\sum_{j=1}^{n}\exp(u_{j})}$$

Relation Representation

$$\mathbf{z} = \sum_{i=1}^{n} a_i \mathbf{h}_i$$

Relation Representation

 $\mathbf{z} = \sum_{i=1}^{n} a_i \mathbf{h}_i$

Softmax Layer

 $\mathbf{y} = \operatorname{softmax}(\mathbf{Wz})$ $c = \operatorname{argmax}_{i}(y_{i});$ $c \in \{ per:spouse, org: founded, \dots \}$

• Word dropout: balance OOV distribution

Penner is survived by his brother, John

• Word dropout: balance OOV distribution

Penner is <UNK> by his brother, John

• Entity masking: focus on relations, not specific entities

Penner is survived by his brother, John

• Entity masking: focus on relations, not specific entities

SUBJ-PER is survived by his brother, John

• Entity masking: focus on relations, not specific entities

SUBJ-PER is survived by his brother, OBJ-PER

• Linguistic information: <u>POS</u> and <u>NER</u> embeddings from Stanford CoreNLP

Penner is survived by ...

• Linguistic information: <u>POS</u> and <u>NER</u> embeddings from Stanford CoreNLP

Penner	is	survived	by	• • •
NNP	VPZ	VBN	IN	• • •
PER	0	0	0	•••

• Linguistic information: <u>POS</u> and <u>NER</u> embeddings from Stanford CoreNLP

• Linguistic information: <u>POS</u> and <u>NER</u> embeddings from Stanford CoreNLP

Try out these tricks!

• Linguistic information: <u>POS</u> and <u>NER</u> embeddings from Stanford CoreNLP

Try out these tricks!

Overview

Model: A new position-aware attention model

t

Data: A new supervised dataset, TACRED

Result: Improved slot filling

SemEval 2010: Popular But Suboptimal

- Small in size (10.7k)
- Different and vague relations

A New York Times food writer fries the potatoes in a **mixture** of peanut oil and duck fat with bacon added.

SemEval 2010: Popular But Suboptimal

- Small in size (10.7k)
- Different and vague relations

A New York Times food writer fries the potatoes in a mixture of peanut Instrument-Agency oil and duck fat with bacon added.

The TAC Relation Extraction Dataset

The TAC Relation Extraction Dataset

- Crowdsourced
- Tailored for TAC KBP slot filling
- Four explicit goals
 - Large-scale
 - Real-world corpus
 - Negative examples
 - Fully supervised

Goal I: Large-scale

Split	# examples
Train	68,124
Dev	22,631
Test	15,509
Total	106,264

Goal I: Large-scale

Split	# examples
Train	68,124
Dev	22,631
Test	15,509
Total	106,264

An order of magnitude larger!

Goal 2: Real-world TAC KBP corpus

Goal 2: Real-world TAC KBP corpus

Longer and more complex context!

Goal 3: Negative examples annotated

Label	Ratio (%)
Positive	20.5
Negative	79.5

Goal 3: Negative examples annotated

Label	Ratio (%)
Positive	20.5
Negative	79.5

Beat false positives in slot filling!

Goal 4: Fully supervised

Pandit worked at the brokerage Morgan Stanley for about 11 years until 2005, when he and some 106 Morgan Stanley colleagues quit and <u>later founded</u> the hedge fund **Old Lane Partners**.

org:founded_by

Goal 4: Fully supervised

Pandit worked at the brokerage Morgan Stanley for about 11 years until 2005, when he and some 106 Morgan Stanley colleagues quit and <u>later founded</u> the hedge fund Old Lane Partners.

org:founded_by

4I TAC KBP slot types + no_relation!

Overview

Model: A new position-aware attention model

t

Data: A new supervised dataset, TACRED

Result: Improved slot filling

Experiments

Experiments

- Task I: Relation Extraction on TACRED
 Q: How well can we do on relation extraction?
 VS: Baseline traditional and neural models.
- Task 2: End-to-end TAC KBP Slot Filling Task
 Q: Does it improve slot filling?
 VS: SOTA slot filling system.

Models Compared Against

Non-Neural

- Stanford's TAC KBP 2015 winning system
 - Patterns
 - Logistic regression (LR)

Models Compared Against

Non-Neural

- Stanford's TAC KBP 2015 winning system
 - Patterns
 - Logistic regression (LR)

Neural

- **CNN** with positional encodings (Nguyen and Grishman, 2015)
- **Dependency-based RNN** (Xu et al., 2015)
- LSTM: 2-layer Stacked-LSTM

	Model	Ρ	R	FI
Traditional	Patterns	86.9	23.2	36.6
	LR	73.5	49.9	59.4
	LR + Patterns	72.9	51.8	60.5

	Model	P	R	FI
Traditional	Patterns	86.9	23.2	36.6
	LR	73.5	49.9	59.4
	LR + Patterns	72.9	51.8	60.5

- Patterns: high precision
- LR: high recall

	Model	Ρ	R	FI
Traditional	LR + Patterns	72.9	51.8	60.5
Neural	CNN	75.6	47.5	58.3
	CNN-PE	70.3	54.2	61.2
	SDP-LSTM	66.3	52.7	58.7
	LSTM	65.7	59.9	62.7

	Model	Ρ	R	FI
Traditional	LR + Patterns	72.9	51.8	60.5
Neural	CNN	75.6	47.5	58.3
	CNN-PE	70.3	54.2	61.2
	SDP-LSTM	66.3	52.7	58.7
	LSTM	65.7	59.9	62.7

- CNN higher precision; LSTM higher recall
- CNN-PE and LSTM outperform traditional

	Model	Ρ	R	FI
Traditional	LR + Patterns	72.9	51.8	60.5
Neural	LSTM	65.7	59.9	62.7
	Our model	65.7	64.5	65.I
	Ensemble (5)	70.1	64.6	67.2

	Model	Ρ	R	FI
Traditional	LR + Patterns	72.9	51.8	60.5
Neural	LSTM	65.7	59.9	62.7
	Our model	65.7	64.5	65.I
	Ensemble (5)	70.1	64.6	67.2

• Our model: +2.4 improvement on FI

Slot Filling Evaluation

- Input: 50k docs + 2-hop queries
- Output: slot fillers

query entity:	Mike Penne	er	
hop-0 slot:	per:spouse		Lisa Dillman
hop-1 slot:	per:title		Sportswriter
(qı	uery)		(fillers)

Slot Filling Evaluation

• Stanford's 2015 winning system + new extractor

	Hop-0			Hop-all		
Model	Ρ	R	FI	Ρ	R	FI
Patterns	63.8	17.7	27.7	58.9	13.3	21.8
LR	36.6	21.9	27.4	25.6	16.3	19.9
+ Patterns (2015 winning)	37.5	24.5	29.7	26.6	19.0	22.2
LR trained on TACRED	32.7	20.6	25.3	16.8	15.3	16.0
+ Patterns	36.5	26.5	30.7	20. I	21.2	20.6

	Hop-0			Hop-all		
Model	Ρ	R	FI	Ρ	R	FI
Patterns	63.8	17.7	27.7	58.9	13.3	21.8
LR	36.6	21.9	27.4	25.6	16.3	19.9
+ Patterns (2015 winning)	37.5	24.5	29.7	26.6	19.0	22.2
LR trained on TACRED	32.7	20.6	25.3	16.8	15.3	16.0
+ Patterns	36.5	26.5	30.7	20. I	21.2	20.6

• Close results when trained on TACRED only

	Нор-0			Hop-all		
Model	Ρ	R	FI	Ρ	R	FI
LR + Patterns (2015 winning)	37.5	24.5	29.7	26.6	19.0	22.2
LR trained on TACRED	32.7	20.6	25.3	16.8	15.3	16.0
+ Patterns	36.5	26.5	30.7	20. I	21.2	20.6
Our model	39.0	28.9	33.2	28.2	21.5	24.4
+ Patterns	40.2	31.5	35.3	29.7	24.2	26.7

	Нор-0			Hop-all		
Model	Ρ	R	FI	Ρ	R	FI
LR + Patterns (2015 winning)	37.5	24.5	29.7	26.6	19.0	22.2
LR trained on TACRED	32.7	20.6	25.3	16.8	15.3	16.0
+ Patterns	36.5	26.5	30.7	20. I	21.2	20.6
Our model	39.0	28.9	33.2	28.2	21.5	24.4
+ Patterns	40.2	31.5	35.3	29.7	24.2	26.7

- Neural vs LR: **+7.9** hop-0, **+8.4** hop-all!
- Best vs 2015 winning: **+5.6** hop-0, **+4.5** hop-all!

Model Ablation

Model	Dev FI
Our model (single)	66.0
- Position-aware attention	65.2
- All attention	64.1
- Word dropout	65.4
- All Above	62.2

Attention plays an important role!

• Performance by sentence length

- LR and CNN drops drastically
- SDP-LSTM least sensitive to lengths
- Our model achieves best performance

Impact of negative examples

- Hop-0 precision increases
- Hop-0 recall stays
- Hop-0 and hop-all FI increases

Attention visualization

 PER-SUBJ
 graduated
 from
 North
 Korea 's
 elite
 Kim
 Il
 Sung
 University
 and
 ORG-OBJ

 ORG-OBJ
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

The cause was a heart attack following a case of pneumonia, said PER-SUBJ's niece, PER-OBJ PER-OBJ. per:other_family

Independent ORG-SUBJ ORG-SUBJ ORG-SUBJ (ECC) chairman PER-OBJ PER-OBJ refused to name the three, saying they would be identified when the final list of candidates for the august 20 polls is published on Friday . Org:top members/employees

Model: A new position-aware attention model

Data: A new supervised dataset, TACRED

Result: Improved slot filling results

Availability

- Code will be available soon at: <u>https://github.com/yuhaozhang/tacred-relation</u>
- The TACRED dataset will be made publicly available via LDC.
- Let us know how you use TACRED!

Availability

- Code will be available soon at: <u>https://github.com/yuhaozhang/tacred-relation</u>
- The TACRED dataset will be made publicly available via LDC.
- Let us know how you use TACRED!

Thank you! Questions?

