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Key Problems

* Stanford routinely found DL models ineffective at
slot filling task.

|. Existing models insufficiently tailored
to relation extraction

2. Lack of a large-scale, fully supervised
dataset for slot filling
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Relation Extraction

Penner is survived by his brother, John, a copy
editor at the Times, and his former wife, Times
sportswriter Lisa Dillman.

Key elements
* Context (relevant + irrelevant)
* Entities (types + positions)
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Position-aware Attention Model
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Position-aware Attention Model

Summary Vector
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Position-aware Attention Model
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Position-aware Attention Model

Relation Representation
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Position-aware Attention Model

Relation Representation
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Other Augmentations
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Other Augmentations

* Entity masking: focus on relations, not specific
entities

SUBJ-PER is survived by his brother, OBJ-PER
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SemEval 2010: Popular But Suboptimal

* Small in size (10.7k)

* Different and vague relations

A New York Times food writer fries !
the potatoes in a mixture of peanut !

oil and duck fat with bacon added.

Instrument-Agency
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The TAC Relation Extraction Dataset

 Crowdsourced
* Tailored for TAC KBP slot filling

* Four explicit goals
* Large-scale
* Real-world corpus
* Negative examples
* Fully supervised



Goal |:Large-scale

Split | # examples
Train 68,124
Dev 22,631
Test 15,509
Total 106,264



Goal |: Large-scale

Split | # examples
Train 68,124
Dev 22,631
Test 15,509
Total 106,264

An order of magnitude larger!
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Goal 2: Real-world TAC KBP corpus

6 | |
p SemEval
o TACRED

Percentage of Dataset (%)
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Sentence Length

Longer and more complex context!



Goal 3: Negative examples annotated

Label | Ratio (%)
Positive 20.5
Negative 79.5




Goal 3: Negative examples annotated

Label

Ratio (%)

Positive

20.5

Negative

79.5

Beat false positives in slot filling!
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Goal 4: Fully supervised

Pandit worked at the brokerage

Morgan Stanley for about | | years until |

2005, when he and some 106 Morgan org:founded_by
Stanley colleagues quit and later founded :

the hedge fund Old Lane Partners. '

41 TAC KBP slot types + no_relation!



Overview

Result: Improved slot filling
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Experiments

e Task |:Relation Extraction on TACRED

Q: How well can we do on relation extraction?

V'S: Baseline traditional and neural models.

* Task 2: End-to-end TAC KBP Slot Filling Task
Q: Does it improve slot filling?
VS: SOTA slot filling system.
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Models Compared Against

Non-
Neural

Neural

* CNN with positional encodings (Nguyen and
Grishman, 2015)

* Dependency-based RNN (Xu et al., 2015)

N LSTM: 2-layer Stacked-LSTM

£ Stanford’s TAC KBP 2015 winning system A
* Patterns

_ * Logistic regression (LR) y
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Relation Extraction Results

Model Fl
Traditional | Patterns 86.9 23.2 36.6

LR 735 499 594

LR + Patterns 729 51.8| 60.5




Relation Extraction Results

Model Fl
Traditional | Patterns 86.9 23.2 36.6

LR 735 499 594

LR + Patterns 729 51.8| 60.5

* Patterns: high precision
* LR: high recall



Relation Extraction Results

Model Fl
Traditional | LR + Patterns 72.9 51.8| 60.5
Neural CNN 75.6| 47.5 58.3
CNN-PE 70.3 542 61.2
SDP-LSTM 66.3 52.7| 58.7
LSTM 65.7| 59.9| 62.7




Relation Extraction Results

Model P R Fl
Traditional | LR + Patterns 72.9 51.8| 60.5
Neural CNN 75.6| 47.5 58.3
CNN-PE 70.3 542 61.2
SDP-LSTM 66.3 52.7| 58.7
LSTM 65.7| 59.9| 62.7

* CNN higher precision; LSTM higher recall
* CNN-PE and LSTM outperform traditional
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Relation Extraction Results

Model P R Fl
Traditional | LR + Patterns 72.9 51.8| 60.5
Neural LSTM 65.7| 599 627

Our model 65.7| 64.5| 65.1

Ensemble (5) 70.1| 64.6| 67.2

* Our model: +2.4 improvement on Fl



Slot Filling Evaluation

* Input: 50k docs + 2-hop queries
* Output:slot fillers

query entity: Mike Penner

(query)

hop-0 slot: per:spouse ------ + Lisa Dillman

hop-1 slot: per:title  ------ » Sportswriter

(fillers)




Slot Filling Evaluation

* Stanford’s 2015 winning system + new extractor

» CoreNLP Annotators

Entity Detection & Linking

Relation Extractor

Post-processors =@




Slot Filling Results

Hop-0 Hop-all
Model P R Fl P R Fl
Patterns 63.8| 17.7| 27.7|58.9| 133| 21.8
LR 36.6| 21.9| 274| 25.6| 16.3| 199
+ Patterns (2015 winning) | 37.5| 245 | 29.7| 26.6| 19.0| 22.2
LR trained on TACRED 32.7| 20.6| 253| 16.8| 153 16.0
+ Patterns 36.5| 26.5| 30.7 | 20.1| 21.2| 20.6




Slot Filling Results

Hop-0 Hop-all
Model P R Fl P R Fl
Patterns 63.8| 17.7| 27.7|58.9| 133| 21.8
LR 36.6| 21.9| 274| 25.6| 16.3| 199
+ Patterns (2015 winning) | 37.5| 245 | 29.7| 26.6| 19.0| 22.2
LR trained on TACRED 32.7| 20.6| 253| 16.8| 153 16.0
+ Patterns 36.5| 26.5| 30.7 | 20.1| 21.2| 20.6

* Close results when trained on TACRED only
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+ Patterns 40.2 | 31.5| 35.3 | 29.7 | 24.2 | 26.7




Slot Filling Results

Hop-0 Hop-all
Model P R Fl P R Fli
LR + Patterns (2015 winning) | 37.5| 245| 29.7| 26.6| 19.0| 22.2
LR trained on TACRED 32.7| 20.6| 253| 16.8| 153 | 16.0
+ Patterns 36.5| 26.5| 30.7| 20.1| 21.2| 20.6
Our model 39.0| 289 | 33.2| 282 21.5| 244
+ Patterns 40.2 | 31.5| 35.3 | 29.7 | 24.2 | 26.7

* Neural vs LR: +7.9 hop-0, +8.4 hop-all!
* Best vs 2015 winning: +5.6 hop-0, +4.5 hop-all!



Further Analysis

 Model Ablation

Model Dev FI

Our model (single) 66.0
- Position-aware attention 65.2
- All attention 64. 1
- Word dropout 65.4
- All Above 62.2

Attention plays an important role!



Further Analysis

* Performance by sentence length
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Further Analysis

* Impact of negative examples
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Further Analysis

e Attention visualization

PER-SUBJ graduated from North Korea ’s elite Kim Il Sung University and ORG-OBJ

ORG-OBJ .
per:schools_attended

The cause was a heart attack following a case of pneumonia, said PER-SUBJ ’s niece ,

PER-OBJ PER-OBJ . per:other_family

Independent ORG-SUBJ ORG-SUBJ ORG-SUBJ ( ECC ) chairman PER-OBJ PER-OBJ refused
to name the three , saying they would be identified when the final list of candidates for the

august 20 polls i1s published on Friday .
org:top_members/employees



Summary

[ Model: A new position-aware attention model ]

+
[ Data: A new supervised dataset, TACRED ]

[ Result: Improved slot filling results ]




Availability

* Code will be available soon at:
https://github.com/yuhaozhang/tacred-relation

* The TACRED dataset will be made publicly available
via LDC.

* Let us know how you use TACRED!




Availability

* Code will be available soon at:
https://github.com/yuhaozhang/tacred-relation

* The TACRED dataset will be made publicly available
via LDC.

* Let us know how you use TACRED!

Thank you! Questions?




